Japanese Camillia

(*Camellia japonica*)

Alex X. Niemiera, Professor, School of Plant and Environmental Sciences, Virginia Tech

Summary:

- **Foliage:** Evergreen broadleaf
- **Height:** 15 feet
- **Spread:** 10 feet
- **Shape:** Upright, dense

Japanese camellia is a dense and formal-appearing large shrub/small tree suitable for USDA plant hardiness zones 7 to 9. Foliage is a glossy, dark-green. Large flowers, ranging from white to pink to red, bloom from winter to spring.

Plant Needs:

- **Zone:** 7 to 9
- **Light:** Partial shade is ideal
- **Moisture:** Moist to average
- **Soil Type:** Sandy or loam pH
- **Range:** 3.7 to 6.5

Functions:

Suggested uses for this plant include screen, border, massing, and specimen plant.

Planting Notes:

Plant in an organic, moist, well-drained, acid soil.

Plant in a partially shady location, protected from winter wind to prevent leaf scorch. Cold temperatures (i.e., 0 degrees F) in Zones 7 and 8 may kill or delay flower buds.

Care:

- Mulch to protect shallow roots.
- Water thoroughly once a week in hot, dry weather.
- Prune in spring after flowering; however, dead wood can be pruned anytime during the year.
- Maintenance required to control scale insects.
Problems:

Various insects and diseases are problems including scale insects and twig die back. Not salt tolerant. Plant may be injured by exposure to salt.

Alternatives:

Consult local garden centers, historic or public gardens and arboreta regarding cultivars and related species that grow well in your area.

Related species:

Sasanqua camellia (*Camellia sasanqua*) is somewhat less hardy but has larger, showier flowers (September to December) than Japanese camellia.

A significant amount of breeding work has been done to develop “cold hardy” camellias. An article in the International Camellia Society web site (http://camellia-ics.org/_ics/ackerm1.htm), “Camellias for Cold Climates” by William L Ackerman, lists cold hardy camellia cultivars. Some of the listed cultivars are claimed to be hardy to minus 15 degrees F.

This material was developed by Carol Ness as part of the Interactive Design and Development Project funded by the Kellogg Foundation.