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Introduction 
Timely crop disease management has been a 
continual challenge for producers. Diseases impact 
overall plant processes that ultimately cause yield 
losses of up to 90% if left unmanaged. With growing 
concern over cost-effective control, uncompromised 
crop yield and quality, and environmental 
sustainability; precision management has emerged as 
a critical need. Specifically, identifying the amount, 
temporal frequency, and spatial variability of plant 
protection input applications offers a promising new 
avenue of effective and affordable disease 
management. Conventional disease assessment 
techniques are inadequate, spatially inaccurate, and 
expensive (time and cost wise) to implement. The 
advent of drones and spectral imaging cameras can 
serve as an effective alternative. This article 
summarizes the concept and operating pipeline of 
drones and spectral imaging sensors towards high-
throughput disease diagnosis and precision 
management. As part of this series of Extension 
publications, we will be publishing updates on our 
on-going research in this area on various crops as 
progress is made on this subject. 

Conventional Disease 
Assessment Techniques  
Historically, manual/visual field scouting has been 
the standard method for identifying disease 
infestations. This technique may work to some 
extent for airborne or foliar diseases but is lacking in 
accuracy and precision when considering soilborne 
diseases (until the visible symptoms become very 
apparent). Normally, biological changes occurring in 
crop canopy or fruit/grains are not immediately 
visible to naked eye. Therefore, for both disease 

types, appearance of symptoms is often an indication 
that it is already too late to avoid yield losses or a 
missed opportunity for deploying rescue treatments. 
Visible disease symptoms are often confused with 
other types of stressors such as soil pH, water stress, 
soil compaction, nutrient deficiencies, or other biotic 
or abiotic stressors (Coyne et al., 2007). Moreover, 
diseases can be confused with one another unless 
examined by a trained expert or pathologist. In 
addition, visual scouting can be very subjective, 
prone to prejudice, can be masked depending on 
environmental conditions and time of day, leading to 
costly errors (Barbedo, 2016).       
 
Destructive crop sampling is the second most 
preferred method for accurate disease detection and 
identification. Crop or soil samples are collected at 
random from the field based on historic assessments 
and then analyzed in the lab through specific tests. 
For example, to identify nematode infestation, soil 
core samples are collected from the field, cleaned 
using eludriator, and then specimens are prepared 
using sugar solutions. These specimens are visually 
observed under a microscope to identify and count 
nematode types. Destructive and/or intensive 
sampling and analysis can be extremely tedious and 
time-consuming. For this reason, it may not be 
possible to collect and analyze the minimum number 
of samples needed to represent spatial occurrence of 
crop diseases within a field. Furthermore, shortage 
of trained nematologists with taxonomic experience 
further intensifies the manual assessment and delays 
obtaining results during peak seasons. Such delay 
can result in poor management decisions, future crop 
failures, and economic losses. Clearly, this triggers 
the need for high-throughput techniques for crop 
disease diagnosis.  
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Emergence of Drones 
Drones are unmanned aerial vehicles that have seen 
significant advancements in the past two decades for 
agricultural operations, especially mapping and 
spraying. Crucial mapping applications include 
detection and assessments of biotic and abiotic 
stresses. Drones equipped with spectral/imaging 
cameras can provide detailed (up to mm of 
resolution) and high-throughput data, and thereby 
the potential for prompt crop protection. Aerial 
imaging enables understanding and management of 
spatial variations within the fields, which is not quite 
often possible with manual scouting or intensive 
plant/soil analysis. Most importantly, drone imaging 
campaigns can be conducted on-demand and quickly 
when crop health assessments are deemed critical.   

Spectral imaging for crop 
disease diagnosis  
Imaging for agricultural crops has evolved over time 
and typically includes visible or RGB, 
Hyperspectral, Multispectral, Fluorescence, and 
Thermal-range imaging among others (Figures 1 and 
2). RGB imaging is similar to what the naked eyes 
can observe while fluorescence, hyperspectral, 
multispectral, and thermal imagers capture 
signatures or profiles of plants in terms of light, 
reflectance, and emissivity beyond visible-range 
imaging. Hyperspectral cameras comprise of 100s 
and 1000s of wavelengths (or sensors) while 
multispectral cameras comprise of 3 to 10 
wavelengths within RGB and Near-infrared ranges 
shown in figures 1 and 2. These cameras are quite 
widely used for plant disease diagnosis as those can 
capture signatures pertaining to biological changes 
in crops (Figure 3), even prior to appearance of 
visible symptoms. Reflectance, which is the ratio of 
light/energy reflected from the crop surface to the 
light/energy incident on the crop surface is captured 
by the spectral cameras in these wavelengths. Figure 
4 illustrates hyperspectral reflectance signatures for 
soybeans infected with varying severity of Asian 
rust. It can be observed that within 400-700 nm (i.e., 
Visible range) the reflectance is distinctly higher for 
higher levels of disease severity. This trend reverses 
within the Near-infrared spectrum where reflectance 
for a healthier crop is higher. Such signatures can 
potentially be utilized to identify crop types as well 
as the levels of disease incidence and/or severity.   
   
 

  
Figure 1. Examples of market-available drone 
mountable RGB, Multispectral, and Hyperspectral 
cameras. 
 

  
Figure 2. Illustration of electromagnetic spectrum 
utilized in spectral imaging. (Original: Penubag 
Vector: Victor Blacus, via Wikimedia Commons). 
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Figure 3. Illustration of light reflectance profiles from 
the dead, stressed, and healthy leaves. 
 

  
Figure 4. Illustration of spectral signatures for Asian 
rust in soybeans (Source: Furlanetto et al., 2021). 

Spectral vegetation indices 
for mapping crop diseases  
Vegetation indices are the most widely used features 
of spectral imagery to detect crop problems. These 
are derived using computer-driven mathematical 
normalization (calculation) of reflectance signatures 
measured in different wavelengths of the spectral 
sensors/cameras. Some of the popular indices 
include but are not limited to Normalized Difference 
Vegetation Index (NDVI), Green-NDVI, 
Normalized Difference Red-Edge Index (Ranjan et 
al., 2019; Chandel et al., 2021a). Typically, the 
higher the magnitudes of such vegetation indices, the 
healthier that the plants are (and vice versa for 
stressed plants). Different vegetation indices have 
demonstrated potentials for detecting different crop-

problem combinations (Singh et al., 2020; Chandel 
et al., 2021b) as also summarized in table 1.  
 
Table 1. Example case studies on aerial imagery 
derived spectral vegetation indices for crop disease 
diagnosis. These are part of the on-going research 
at the Tidewater Agricultural Research and 
Extension Center in Suffolk, VA.  

Crop Problem Vegetation Indices 
Used 

Soybean Cyst 
nematodes 

GOSAVIa, NDREb, 
GNDVIc, GCId, GRVIe 

Peanuts Sclerotinia 
Blight 

GLIf, NLIg, OSAVIh, 
IPVIi, NDVIj 

Corn Leaf spot GOSAVIa, GNDVIc, 
GCId, GRVIe 

aGreen Optimized Soil-Adjusted Vegetation Index 
bNormalized Difference Red-Edge Index 
cGreen Normalized Difference Vegetation Index 
dGreen Chlorophyll Index 
eGreen-Red Vegetation Index 
fGreen Leaf Index; gNon-Linear Index 
hOptimized Soil-Adjusted Vegetation Index 
iInfrared Percentage Vegetation Index 
eNormalized Difference Vegetation Index  

Diagnosis to management: 
the precision way forward  
Leveraging high-throughput spectral imagery from 
drones and deploying vegetation indices or artificial 
intelligence algorithms can help derive early 
projections of disease occurrences. These derivations 
can be converted to zone-based prescription maps 
using GIS tools. Once obtained, these GIS-based 
“shapefiles” are feedable to modern-day tractor 
retrofits and drone-based sprayers to calibrate 
variable application rates of plant protection 
products. Research has been on-going to make this 
process seamless (Figure 5). Ultimately, this will 
enable producers to apply control measures only 
when needed, where needed, and in the amounts 
needed for uncompromised yield and production 
sustainability. 
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Figure 5. Illustration of operating pipeline from high-
throughput spectral imaging to precision 
management of crop diseases. 

References 
Barbedo, J.G.A. 2016. “A review on the main 

challenges in automatic plant disease 
identification based on visible range images.” 
Biosystems Engineering 144: 52-60 

Chandel, A.K., L.R. Khot, and L.X. Yu. 2021a. 
“Alfalfa (Medicago sativa L.) crop vigor and 
yield characterization using high-resolution aerial 
multispectral and thermal infrared imaging 
technique.” Computers and Electronics in 
Agriculture 182, p.105999 

Chandel, A.K., L.R. Khot, and B. Sallato. 2021b. 
“Apple powdery mildew infestation detection 
and mapping using high-resolution visible and 
multispectral aerial imaging technique.” Scientia 
Horticulturae 287, p.110228 

Coyne, D., L. Nicol, and B. Claudius-Cole. 2007. 
“Nematologia pratica: Um guia de campo e de 
laboratorio. West Africa: International Institute 
of Tropical Agriculture (IITA)” 

Furlanetto, R.H., M.R. Nanni, M.S. Mizuno, L.G.T. 
Crusiol, and C.R. da Silva. 2021. “Identification 
and classification of Asian soybean rust using 
leaf-based hyperspectral reflectance.” 
International Journal of Remote Sensing 42(11): 
4177-4198 

Ranjan, R., A.K. Chandel, L.R. Khot, H.Y. Bahlol, 
J. Zhou, R.A. Boydston, and P.N. Miklas. 2019. 
“Irrigated pinto bean crop stress and yield 
assessment using ground based low altitude 
remote sensing technology.” Information 
Processing in Agriculture 6(4): 502-514 

Singh, V., N. Sharma, and S. Singh. 2020. “A 
review of imaging techniques for plant disease 
detection.” Artificial Intelligence in 
Agriculture 4:  229-242 

Visit Virginia Cooperative Extension: ext.vt.edu 

Virginia Cooperative Extension is a partnership of Virginia Tech, Virginia 
State University, the U.S. Department of Agriculture, and local governments. 
Its programs and employment are open to all, regardless of age, color, 
disability, gender, gender identity, gender expression, national origin, 
political affiliation, race, religion, sexual orientation, genetic information, 
military status, or any other basis protected by law. 

2023           SPES-515NP 


	Aerial imagery to improve disease diagnosis and management in field crops
	Part 1: Introduction & Background
	Introduction
	Conventional Disease Assessment Techniques
	Emergence of Drones
	Spectral imaging for crop disease diagnosis
	Spectral vegetation indices for mapping crop diseases
	Diagnosis to management: the precision way forward
	References

	Authored by:Abhilash Chandel, Assistant Professor and Extension Specialist for Precision Agricultural Technologies and Data Management, Biological Systems Engineering, Tidewater Agricultural Research and Extension Center, Virginia Tech
	Timely crop disease management has been a continual challenge for producers. Diseases impact overall plant processes that ultimately cause yield losses of up to 90% if left unmanaged. With growing concern over cost-effective control, uncompromised crop yield and quality, and environmental sustainability; precision management has emerged as a critical need. Specifically, identifying the amount, temporal frequency, and spatial variability of plant protection input applications offers a promising new avenue of effective and affordable disease management. Conventional disease assessment techniques are inadequate, spatially inaccurate, and expensive (time and cost wise) to implement. The advent of drones and spectral imaging cameras can serve as an effective alternative. This article summarizes the concept and operating pipeline of drones and spectral imaging sensors towards high-throughput disease diagnosis and precision management. As part of this series of Extension publications, we will be publishing updates on our on-going research in this area on various crops as progress is made on this subject.
	Destructive crop sampling is the second most preferred method for accurate disease detection and identification. Crop or soil samples are collected at random from the field based on historic assessments and then analyzed in the lab through specific tests. For example, to identify nematode infestation, soil core samples are collected from the field, cleaned using eludriator, and then specimens are prepared using sugar solutions. These specimens are visually observed under a microscope to identify and count nematode types. Destructive and/or intensive sampling and analysis can be extremely tedious and time-consuming. For this reason, it may not be possible to collect and analyze the minimum number of samples needed to represent spatial occurrence of crop diseases within a field. Furthermore, shortage of trained nematologists with taxonomic experience further intensifies the manual assessment and delays obtaining results during peak seasons. Such delay can result in poor management decisions, future crop failures, and economic losses. Clearly, this triggers the need for high-throughput techniques for crop disease diagnosis. 
	Historically, manual/visual field scouting has been the standard method for identifying disease infestations. This technique may work to some extent for airborne or foliar diseases but is lacking in accuracy and precision when considering soilborne diseases (until the visible symptoms become very apparent). Normally, biological changes occurring in crop canopy or fruit/grains are not immediately visible to naked eye. Therefore, for both disease types, appearance of symptoms is often an indication that it is already too late to avoid yield losses or a missed opportunity for deploying rescue treatments. Visible disease symptoms are often confused with other types of stressors such as soil pH, water stress, soil compaction, nutrient deficiencies, or other biotic or abiotic stressors (Coyne et al., 2007). Moreover, diseases can be confused with one another unless examined by a trained expert or pathologist. In addition, visual scouting can be very subjective, prone to prejudice, can be masked depending on environmental conditions and time of day, leading to costly errors (Barbedo, 2016).      
	Drones are unmanned aerial vehicles that have seen significant advancements in the past two decades for agricultural operations, especially mapping and spraying. Crucial mapping applications include detection and assessments of biotic and abiotic stresses. Drones equipped with spectral/imaging cameras can provide detailed (up to mm of resolution) and high-throughput data, and thereby the potential for prompt crop protection. Aerial imaging enables understanding and management of spatial variations within the fields, which is not quite often possible with manual scouting or intensive plant/soil analysis. Most importantly, drone imaging campaigns can be conducted on-demand and quickly when crop health assessments are deemed critical.  
	Figure 1. Examples of market-available drone mountable RGB, Multispectral, and Hyperspectral cameras.
	Imaging for agricultural crops has evolved over time and typically includes visible or RGB, Hyperspectral, Multispectral, Fluorescence, and Thermal-range imaging among others (Figures 1 and 2). RGB imaging is similar to what the naked eyes can observe while fluorescence, hyperspectral, multispectral, and thermal imagers capture signatures or profiles of plants in terms of light, reflectance, and emissivity beyond visible-range imaging. Hyperspectral cameras comprise of 100s and 1000s of wavelengths (or sensors) while multispectral cameras comprise of 3 to 10 wavelengths within RGB and Near-infrared ranges shown in figures 1 and 2. These cameras are quite widely used for plant disease diagnosis as those can capture signatures pertaining to biological changes in crops (Figure 3), even prior to appearance of visible symptoms. Reflectance, which is the ratio of light/energy reflected from the crop surface to the light/energy incident on the crop surface is captured by the spectral cameras in these wavelengths. Figure 4 illustrates hyperspectral reflectance signatures for soybeans infected with varying severity of Asian rust. It can be observed that within 400-700 nm (i.e., Visible range) the reflectance is distinctly higher for higher levels of disease severity. This trend reverses within the Near-infrared spectrum where reflectance for a healthier crop is higher. Such signatures can potentially be utilized to identify crop types as well as the levels of disease incidence and/or severity.  
	Figure 2. Illustration of electromagnetic spectrum utilized in spectral imaging. (Original: Penubag Vector: Victor Blacus, via Wikimedia Commons).
	Table 1. Example case studies on aerial imagery derived spectral vegetation indices for crop disease diagnosis. These are part of the on-going research at the Tidewater Agricultural Research and Extension Center in Suffolk, VA. 
	Vegetation Indices Used
	Problem
	Crop
	GOSAVIa, NDREb, GNDVIc, GCId, GRVIe
	Cyst nematodes
	Soybean
	GLIf, NLIg, OSAVIh, IPVIi, NDVIj
	Sclerotinia Blight
	Peanuts
	/Figure 3. Illustration of light reflectance profiles from the dead, stressed, and healthy leaves.
	GOSAVIa, GNDVIc, GCId, GRVIe
	Leaf spot
	Corn
	aGreen Optimized Soil-Adjusted Vegetation Index
	bNormalized Difference Red-Edge Index
	cGreen Normalized Difference Vegetation Index
	dGreen Chlorophyll Index
	eGreen-Red Vegetation Index
	fGreen Leaf Index; gNon-Linear Index
	hOptimized Soil-Adjusted Vegetation Index
	iInfrared Percentage Vegetation Index
	eNormalized Difference Vegetation Index 
	Leveraging high-throughput spectral imagery from drones and deploying vegetation indices or artificial intelligence algorithms can help derive early projections of disease occurrences. These derivations can be converted to zone-based prescription maps using GIS tools. Once obtained, these GIS-based “shapefiles” are feedable to modern-day tractor retrofits and drone-based sprayers to calibrate variable application rates of plant protection products. Research has been on-going to make this process seamless (Figure 5). Ultimately, this will enable producers to apply control measures only when needed, where needed, and in the amounts needed for uncompromised yield and production sustainability.
	Figure 4. Illustration of spectral signatures for Asian rust in soybeans (Source: Furlanetto et al., 2021).
	Vegetation indices are the most widely used features of spectral imagery to detect crop problems. These are derived using computer-driven mathematical normalization (calculation) of reflectance signatures measured in different wavelengths of the spectral sensors/cameras. Some of the popular indices include but are not limited to Normalized Difference Vegetation Index (NDVI), Green-NDVI, Normalized Difference Red-Edge Index (Ranjan et al., 2019; Chandel et al., 2021a). Typically, the higher the magnitudes of such vegetation indices, the healthier that the plants are (and vice versa for stressed plants). Different vegetation indices have demonstrated potentials for detecting different crop-problem combinations (Singh et al., 2020; Chandel et al., 2021b) as also summarized in table 1. 
	Singh, V., N. Sharma, and S. Singh. 2020. “A review of imaging techniques for plant disease detection.” Artificial Intelligence in Agriculture 4:  229-242
	Visit Virginia Cooperative Extension: ext.vt.edu
	Virginia Cooperative Extension is a partnership of Virginia Tech, Virginia State University, the U.S. Department of Agriculture, and local governments. Its programs and employment are open to all, regardless of age, color, disability, gender, gender identity, gender expression, national origin, political affiliation, race, religion, sexual orientation, genetic information, military status, or any other basis protected by law.
	2023           SPES-515NP
	Figure 5. Illustration of operating pipeline from high-throughput spectral imaging to precision management of crop diseases.
	Barbedo, J.G.A. 2016. “A review on the main challenges in automatic plant disease identification based on visible range images.” Biosystems Engineering 144: 52-60
	Chandel, A.K., L.R. Khot, and L.X. Yu. 2021a. “Alfalfa (Medicago sativa L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique.” Computers and Electronics in Agriculture 182, p.105999
	Chandel, A.K., L.R. Khot, and B. Sallato. 2021b. “Apple powdery mildew infestation detection and mapping using high-resolution visible and multispectral aerial imaging technique.” Scientia Horticulturae 287, p.110228
	Coyne, D., L. Nicol, and B. Claudius-Cole. 2007. “Nematologia pratica: Um guia de campo e de laboratorio. West Africa: International Institute of Tropical Agriculture (IITA)”
	Furlanetto, R.H., M.R. Nanni, M.S. Mizuno, L.G.T. Crusiol, and C.R. da Silva. 2021. “Identification and classification of Asian soybean rust using leaf-based hyperspectral reflectance.” International Journal of Remote Sensing 42(11): 4177-4198
	Ranjan, R., A.K. Chandel, L.R. Khot, H.Y. Bahlol, J. Zhou, R.A. Boydston, and P.N. Miklas. 2019. “Irrigated pinto bean crop stress and yield assessment using ground based low altitude remote sensing technology.” Information Processing in Agriculture 6(4): 502-514

