Part IX.

Conversion Factors Needed for Common Fertilizer Calculations

Authored by:

Mark Reiter, Associate Professor and Extension Soils and Nutrient Management Specialist, Eastern Shore Agricultural Research and Extension Center, Virginia Tech

The world is a big place, and farmers, industry, government, and others likely use different units of measure, oxidation states, and measurements when calculating and reporting nutrient use for farming systems. The following table outlines some of the most common conversions needed for nutrient management. For instance, to convert K to $\mathrm{K}_{2} \mathrm{O}$, you would multiply your K number by 1.2051 . So a fertilizer being reported as $49.8 \% \mathrm{~K}$ is also commonly reported as $49.8 \% \times 1.2051=60 \% \mathrm{~K}_{2} \mathrm{O}$. Therefore, you are equally correct to report muriate of potash (KCl) fertilizer as $49.8 \% \mathrm{~K}$ or $60 \% \mathrm{~K}_{2} \mathrm{O}$ as long as you have the correct unit represented. However, note that fertilizer law generally states that oxidation states should be reported for certain nutrients (e.g., $\mathrm{K}_{2} \mathrm{O}$ must be used on Virginia fertilizer labels).

Table 1. Common fertilizer conversions needed for nutrient management calculations

Column 1: Conversion	Multiply by	Column 2: Multiplication vValue
Nutrient sources		
P to $\mathrm{P}_{2} \mathrm{O}_{5}$	Multiply P by	2.2910
$\mathrm{P}_{2} \mathrm{O}_{5}$ to P	Multiply $\mathrm{P}_{2} \mathrm{O}_{5}$ by	0.4365
K to $\mathrm{K}_{2} \mathrm{O}$	Multiply K by	1.2051
$\mathrm{K}_{2} \mathrm{O}$ to K	Multiply $\mathrm{K}_{2} \mathrm{O}$ by	0.8301
KCl to K	Multiple KCl by	0.5244
KCl to Cl	Multiply KCl by	0.4756
$\mathrm{K}_{2} \mathrm{SO}_{4}$ to K	Multiply $\mathrm{K}_{2} \mathrm{SO}_{4}$ by	0.4487
Mg to MgO	Multiply Mg by	1.6578
MgO to Mg	Multiply MgO by	0.6032
MgCO_{3} to MgO	Multiply MgCO_{3} by	0.4782
MgO to MgCO_{3}	Multiply MgO by	2.0913
MgSO_{4} to Mg	Multiply MgSO_{4} by	0.2020
MgCO_{3} to CaCO_{3}	Multiply MgCO_{3} by	1.1867
CaO to Ca	Multiply CaO by	0.7147
Ca to CaO	Multiply Ca by	1.3992
CaCO_{3} to MgCO_{3}	Multiply CaCO_{3} by	0.8426
CaCO_{3} to CaO	Multiply CaCO_{3} by	0.5603
$\mathrm{K}_{2} \mathrm{SO}_{4}$ to S	Multiply $\mathrm{K}_{2} \mathrm{SO}_{4}$ by	0.1840
Column 1: Conversion	Multiply by	Column 2: Multiplication vValue
CaSO_{4} to Ca	Multiply CaSO_{4} by	0.2938
CaSO_{4} to S	Multiply CaSO_{4} by	0.2350
SO_{4} to S	Multiply SO_{4} by	0.3339

S to SO_{4}	Multiply S by	2.9963
NaCl to Cl	Multiply NaCl by	0.6066
N to NH_{3}	Multiply N by	1.2158
N to KNO_{3}	Multiply N by	7.2162
NH_{3} to N	Multiply NH_{3} by	0.8225
N to $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	Multiply N by	4.7160
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ to N	Multiply $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ by	0.2120
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ to S	Multiply $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ by	0.2427
N to $\mathrm{NH}_{4} \mathrm{NO}_{3}$	Multiply N by	2.8571
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ to N	Multiply $\mathrm{NH}_{4} \mathrm{NO}_{3}$ by	0.3500
Concentration		
Parts per million (ppm) to pounds per acre (lb/acre)	Multiply ppm by	2.0
Pounds per acre (lb/acre) to parts per million (ppm)	Multiply lb/acre by	0.5
Percentage to gram per kilogram	Multiply percent by	10
Gram per kilogram to percentage	Multiply gram per kilogram by	0.1
Length		
Mile to kilometer	Multiply mile by	1.609
Kilometer to mile	Multiply kilometer by	0.621
Foot to meter	Multiply foot by	0.304
Meter to foot	Multiply meter by	3.28
Column 1: Conversion	Multiply by	Column 2: Multiplication vValue
Area		
Acre to hectare	Multiply acre by	0.405
Hectare to acre	Multiply hectare by	2.47
Square foot to square meter	Multiply square foot by	0.0929
Square meter to square foot	Multiply square meter by	10.76
Volume		
Gallon to liter	Multiply gallon by	3.78

Liter to gallon	Multiply liter by	0.265
Quart to liter	Multiply quart by	0.946
Liter to quart	Multiply liter by	1.057
Mass		
Pound to gram	Multiply pound by	454
Gram to pound	Multiply gram by	0.00220
Pound to kilogram	Multiply pound by	0.454
Kilogram to pound	Multiply kilogram by	2.205
U.S. ton to tonne	Multiply U.S. ton by	0.907
Tonne to U.S. ton	Multiply tonne by	1.102
Yield and rate		
Pound per acre to kilogram per hectare	Multiply pound per acre by	1.12
Kilogram per hectare to pound per acre	Multiply kilogram per hectare to	0.893
Bushel per acre (bu/acre) for 60 -pound bushel to kilogram per hectare	Multiply bu/acre by	67.19
Column 1: Conversion	Multiply by	Column 2: Multiplication vValue
Bushel per acre (bu/acre) for 56 -pound bushel to kilogram per hectare	Multiply bu/acre by	62.71
Bushel per acre (bu/acre) for 48-pound bushel to kilogram per hectare	Multiply bu/acre by	53.75
Gallon per acre to liter per hectare	Multiply gallon per acre by	9.35
Liter per hectare to gallon per acre	Multiply liter per hectare by	0.107
Temperature		
Fahrenheit (${ }^{\circ} \mathrm{F}$) to Celsius (${ }^{\circ} \mathrm{C}$)	Multiply Fahrenheit by	$5 / 9 \times\left({ }^{\circ} \mathrm{F}-32\right)$
Celsius (${ }^{\circ} \mathrm{C}$) to Fahrenheit (${ }^{\circ} \mathrm{F}$)	Multiply Celsius by	$\left(9 / 5 \times{ }^{\circ} \mathrm{C}\right)+32$

