Skip Menu

Return to Skip Menu

Main Navigation

Return to Skip Menu

Main Content

Home Systems

Title Summary Date ID Author(s)
Best Management Practice Fact Sheet 14: Wet Ponds

Wet ponds (WP) are ponds or lakes which provide treatment
and storage of stormwater. The water depth is set
by a structure known as an outlet structure. Wet ponds
are probably the most well-known best management
practice for treatment of stormwater. Because of their
size, they are usually designed to include storage above
the normal pool elevation. This added storage can provide
reductions in downstream flooding and assist in
protecting stream channels. They tend to be large; in
some cases, they can become a passive community
amenity (See Figure 1).

Sep 9, 2013 426-133 (BSE-79P)
Best Management Practice Fact Sheet 15: Extended Detention Ponds

Extended detention ponds (EDs) are dry detention ponds
that provide 12 to 24 hours of runoff storage during peak
runoff events (see figure 1). Releases from the ED ponds
are controlled by an outlet structure. During a storm
event, as the discharge restriction is reached, water backs
up into the ED pond. The pool slows flow velocities and
enables particulate pollutants to settle. Peak flows are
also reduced. ED ponds have the lowest overall pollutant-
removal rate of any stormwater treatment option,
so they are often combined with other upstream, lowimpact
development (LID) practices to better maximize
pollutant-removal rates. Due to their placement at the exit
point of the watershed, ED is often the last opportunity
to treat stormwater before it is discharged to a stream.
Because of its low treatment performance, an ED should
be viewed as the treatment option of last resort.

Sep 9, 2013 426-134 (BSE-82P)
Best Management Practice Fact Sheet 1: Rooftop Disconnection

Rooftop disconnection (RD) is one of the simplest means of reducing stormwater from residential lots. RD takes roof runoff that has been collected in gutters and piped directly to streets, storm drains, and streams and redirects it away from impervious surfaces to landscaped areas (figure 1). Rooftop disconnection is a very sustainable best management practice (BMP) because it controls pollutants in runoff near their source. Redirected runoff from downspouts is infiltrated, filtered, treated, or reused prior to draining into a stormwater conveyance system.

Sep 5, 2013 426-120 (BSE-93P)
Best Management Practice Fact Sheet 2: Sheet Flow to Open Space Sep 6, 2013 426-121 (BSE-83P)
Best Management Practice Fact Sheet 4: Soil Restoration Sep 6, 2013 426-123 (BSE-80P)
Best Management Practice Fact Sheet 5: Vegetated Roofs Sep 6, 2013 426-124 (BSE-81P)
Best Management Practice Fact Sheet 6: Rainwater Harvesting Sep 6, 2013 426-125 (BSE-90P)
Best Management Practice Fact Sheet 7: Permeable Pavement Sep 6, 2013 426-126 (BSE-84P)
Best Management Practice Fact Sheet 8: Infiltration Practices Mar 2, 2012 426-127 (BSE-85P)
ENERGY SERIES: Estimating Appliance and Home Electronic Energy Use

If you're trying to decide whether to invest in a more energy-efficient appliance or if you'd like to determine your electricity loads, you may want to estimate appliance energy consumption.

Jun 26, 2014 2901-9014 (BSE-137NP)
ENERGY SERIES: What About Using Ceiling Fans?

Can Ceiling Fans Lower My Utility Bill?

Ceiling fans create a breeze, so room occupants feel cooler and more comfortable. With a ceiling fan running, you can raise the thermostat setting by 2 to 4 degrees during the cooling season with no reduction in comfort. Increasing the room temperature by even two degrees can cut your cooling costs 4 to 6%.

Jun 9, 2014 2901-9002 (BSE-117NP)
ENERGY SERIES: What About the Ductwork?

Air distribution or duct systems are designed to supply rooms with air that is “conditioned”—that is, heated or cooled by the heating, ventilation, and air conditioning (HVAC) equipment—and to recirculate or return the same volume of air back to the HVAC equipment. Your duct system has two main air transfer systems: 1) supply, and 2) return. The supply side delivers the conditioned air to the home through individual room registers. The return side picks up inside air and delivers it to the air handler of your central system where heat and moisture are either removed or added and then delivered to the supply side. All of the air drawn into the return duct(s) is conditioned and should be delivered back through the supply registers.

Jun 9, 2014 2901-9003 (BSE-118NP)
ENERGY SERIES: What Are the Differences Between Mobile and Modular Homes?

Mobile and modular homes are factory-built and generally differ in how much of the construction occurs at the factory. The greater the work at the factory, the less labor is needed where the home will be located.

Jun 26, 2014 2901-9011 (BSE-125NP)
ENERGY SERIES: What Can Builders Do to Help Prevent Moisture Problems in New Construction?

Buildings should be designed and built to provide comfortable and healthy levels of relative humidity. They should also prevent both liquid water from migrating through building components and water vapor from being trapped in building assemblies, like walls.

Jun 26, 2014 2901-9012 (BSE-126NP)
ENERGY SERIES: What Does the Shape of the House Have to Do With Energy Efficiency?

In a home, heat energy is transferred among all materials and substances that are of different temperatures—within the building materials, inside the building itself, and outside the building envelope. The term “building envelope” refers to all of the external building materials, windows, and walls that enclose the internal space. Heat moves only when there is a difference in temperature, and it always moves from the warm side to the cool side. Heat will continue to “flow” until any touching materials reach the same temperature. However, we usually want the inside of a home to have a different temperature from the outside.

Jun 26, 2014 2901-9013 (BSE-127NP)
ENERGY SERIES: What about Appliances? Jun 26, 2014 2908-9015 (BSE-128NP)
ENERGY SERIES: What about Caulking and Weather-Stripping? Jul 1, 2014 2908-9017 (BSE-130NP)
ENERGY SERIES: What about Dishwashers? Jul 1, 2014 2908-9018 (BSE-131NP)
ENERGY SERIES: What about Insulation?

Insulation is rated in terms of thermal resistance, called R-value, which indicates the resistance to heat flow. Although insulation can slow heat flow—conduction, convection and radiation—its greatest impact is on conduction.

Jun 10, 2014 2901-9006 (BSE-120NP)
ENERGY SERIES: What about Landscaping and Energy Efficiency? Jul 7, 2014 BSE-145NP
ENERGY SERIES: What about Mold?

Mold has received a lot of attention of late because of high profile lawsuits and television news broadcasts that have highlighted the potential hazards and liabilities associated with indoor mold. What is mold? Molds, along with mildews, yeasts, and mushrooms, all belong to the kingdom fungi. Fungi are unicellular or multicellular organisms that primarily use absorption as a means to obtain energy from their environment, unlike green plants, which use chlorophyll to obtain energy from sunlight. The term “mold” describes unwanted visible fungal growth. “Mildew” is fungi that grows on fabrics or that causes plant disease. The term “yeast” is fungi that are unicellular when cultured.

Jun 26, 2014 2901-9008 (BSE-122NP)
ENERGY SERIES: What about Radiant Barriers? Jul 7, 2014 2908-9021 (BSE-138NP)
ENERGY SERIES: What about Refrigerators and Freezers? Jul 2, 2014 2908-9022 (BSE-143NP)
ENERGY SERIES: What about Ventilation? Jul 7, 2014 2908-9024 (BSE-135NP)
ENERGY SERIES: What about Windows? Jun 30, 2014 2901-9010 (BSE-124NP)
ENERGY SERIES: What about the Air Conditioning System?

As you begin the process of selecting the most efficient air conditioning system for your home, investigate the critical issues of system size, placement, installation, and contractor experience.  Your goal is to obtain an efficient system by:  sizing the system for the specific cooling load of your home; selecting and properly installing the thermostats or controls; designing a ductwork system to deliver the correct amount of conditioned air to each space; and sealing and insulating all ductwork.

Jun 9, 2014 2901-9001 (BSE-142NP)
ENERGY SERIES: What about the Bathroom? Jul 1, 2014 2908-9016 (BSE-129NP)
ENERGY SERIES: What about the Heating System?

The efficiency of a gas (natural or propane) or oil furnace is measured by the Annual Fuel Utilization Efficiency (AFUE), which describes the heat produced from the energy used. This rating takes into consideration losses from pilot lights, start-up, and stopping. For example, a furnace with an AFUE rating of 80 converts 80% of the fuel it burns into usable heat. New furnaces usually rate in the mid-70s to low 80s, whereas older furnaces will be in the 50s or 60s. ENERGY STAR® qualified oil and gas furnaces have annual fuel utilization efficiency (AFUE) ratings of 83% and 90%, or higher, making them up to 15% more efficient than standard models. Unlike the Seasonal Energy Efficiency Ratio (SEER) and Heating Season Performance Factor (HSPF) ratings, the AFUE does not consider the unit’s electricity use for fans and blowers.

Jun 9, 2014 2901-9005 (BSE-119NP)
ENERGY SERIES: What about the Laundry Area?
The laundry room can be a big consumer of energy—more than 1,000 kilowatt-hours (kWh) a year—and water—and a big producer of unwanted heat and humidity in the summer. It makes good sense to think about both the location and the appliances in it if you want to run an energy-efficient laundry. And there are new washers and dryers on the market now that make it easier than ever to do so.
Jun 9, 2014 2901-9007 (BSE-121NP)
ENERGY SERIES: What about the Roof? Jul 2, 2014 2908-9023 (BSE-134NP)
ENERGY SERIES: What about the Water Heater?

Heating water is the third largest energy expense in your home, after heating and cooling the entire space; and, it can account for 15-25% of your utility bill. It’s not hard to see why a family of four, each taking a 5-minute shower a day under inefficient showerheads, can use 700 gallons of water in a week representing a 3-year supply of drinking water for one person! There are several ways to cut down the amount you spend on heating water: a) insulate your water heater and pipes; b) reduce the amount of hot water you use; and c) turn down the thermostat on your water heater.

Jun 26, 2014 2901-9009 (BSE-123NP)
ENERGY SERIES: What is the Whole-House Systems Approach to Energy Efficiency? Jul 7, 2014 2908-9025 (BSE-136NP)
ENERGY SERIES:What about House Design and Room Location? Jul 1, 2014 2908-9019 (BSE-132NP)
ENERGY SERIES:What about Moisture? Jul 2, 2014 2908-9020 (BSE-133NP)
On-Site Sewage Treatment Alternatives

The purpose of this publication is to describe on-site technologies for treating domestic sewage where conventional means (public sewer or septic tank with drainfield) are not available. These technologies are described as alternatives in this publication. Our goal is to provide information that can be used by property owners and residents to initiate action to rectify sewage-disposal problems, especially where current wastewater treatment is inadequate. This work is intended to provide information on alternative wastewater treatment options that will help the reader to make informed decisions when dealing with oversight agencies and contractors; it is not intended to serve as a stand-alone reference for design or construction.

Jul 1, 2009 448-407
Pesticide Applicator Manuals Nov 17, 2011 VTTP-2
Urban Stormwater: Terms and Definitions Sep 5, 2013 426-119 (BSE-78P)