Skip Menu

Return to Skip Menu

Main Navigation

Return to Skip Menu

Main Content

Biotechnology

Title Summary Date ID Author(s)
Biodiesel Fuel

There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel.

May 1, 2009 442-880
Biomethane Technology

This publication provides a general overview of anaerobic digestion and the current status of biomethane technology on livestock farms in the United States. It is part of the Bioenergy Engineering Education Program (BEEP) of the Biological Systems Engineering Department at Virginia Tech. Most of the discussion uses dairy manure as an example of feedstock for an anaerobic digester. Resources which provide more detailed information on anaerobic digesters are listed.

May 1, 2009 442-881
Fuel Ethanol

As energy prices reach historic highs, there is a broad interest across the state in utilizing and producing renewable bioenergy from domestic agricultural products. Nationwide, it is expected that a 20 percent replacement of petroleum usage will happen over the next ten years. This is equivalent to 35 billion gallons of alternative fuel use by 2017, with fuel ethanol playing an important role in this transition. Fuel ethanol can be blended with gasoline (from 10 percent to 85 percent), and thus reduce the amount of gasoline used. In the United States, corn kernels are commonly used for producing fuel ethanol, and thus reduce the nation’s dependence on foreign oils. The purpose of this publication is to introduce the basics of fuel ethanol and answer questions regarding fuel ethanol.

May 1, 2009 442-884
Microalgae as a Feedstock for Biofuel Production Feb 9, 2011 442-886
Microalgae as a Feedstock for Biofuel Production

With energy prices reaching historical highs, biodiesel as an alternative fuel is increasingly attracting attention. Currently, biodiesel is made from a variety of feedstocks, including pure vegetable oils, waste cooking oils, and animal fat; however, the limited supply of these feedstocks impedes the further expansion of biodiesel production. Microalgae have long been recognized as potentially good sources for biofuel production because of their high oil content and rapid biomass production. 

May 28, 2009 442-886
Mitigation of Greenhouse Gas Emissions in Agriculture Apr 2, 2014 BSE-105P
Small-Scale Biodiesel Production: Safety, Fuel Quality, and Waste Disposal Considerations

Biodiesel is a cleaner-burning, renewable fuel that is a feasible alternative to fossil-based diesel fuel. Largely due to historically high energy prices, concerns over the environmental impact of fossil fuel, and a desire for energy independence, citizens of Virginia have become increasingly interested in renewable alternative fuels, including biodiesel fuel. A previous Virginia Cooperative Extension publication (see Biodiesel Fuel under References) discusses the basics of biodiesel fuel, including terminology, engine compatibility, engine warranty, biodiesel storage, fuel performance, cold temperature concerns, and emissions. This publication addresses producing one’s own biodiesel fuel from waste oil, fats, and oilseed crops. Currently, there are many small-scale biodiesel producers (ranging in size from several gallons to several hundred gallons per batch). There are significant safety considerations when operating small-scale processors. In addition, the fuel quality and the by-product disposal need to be closely monitored to assure engines are not damaged and regulations are met. The purpose of this document is to address safety, fuel quality, and waste disposal related to small-scale production. We present a general discussion of these issues based on a case study of four small-scale biodiesel processors conducted cooperatively by James Madison University (JMU), Virginia Tech (VT), the Virginia Clean Cities Collation, and Blue Ridge Clean Fuels Inc.

May 1, 2009 442-885